

Welcome to docproc’s documentation!

docproc is a simple content processing pipeline, which allows you to take
arbitrary input data and to transform it to create output data of any kind.

docproc consists of a set of applications, which allow you to perform different
transformation steps one after each other to achieve the desired result. Its
design is based on the functional steps to be taken to get useful output out of
raw data and can be described as follows:

	consume input

	process output based on technical and functional requirements for the desired
output

	output the processed content as necessary, by e.g. sending it to a different
host, writing it to disk or consuming the result via a queue.

To enable scalability, each of those functional steps can be handled by a
separate application of docproc. The applications are connected by message
queues, they read from and write to. This allows you to scale individual parts
or complete processing pipelines as required by your input and output scenarios.

Contents:

	Quick Start

	Installing

	Applications

	File Input Handlers

	Processors

	Operating the Rules Engine

	Docker Setup

Quick Start

The following steps will run a small docproc content processing pipeline
on your local machine and transform simple CSV input into HTML files.

We are using NATS [https://nats.io/] as message queue implementation for your local system.
Follow its installation instructions [https://nats.io/documentation/tutorials/gnatsd-install/] to get it installed.

	Start gnatsd in a separate shell:

$ gnatsd

	Create two new directories for in- and output named data and output:

$ mkdir data
$ mkdir output

	Start docproc.fileinput in a separate shell using the NATS example
configuration. docproc.fileinput will watch the directory named data in
the current directory:

$ docproc.fileinput -c examples/docproc-fileinput-natsio.conf

	Start docproc.proc in a separate shell using the NATS example
configuration. docproc.proc will write processed contents into a directory
named output in the current directory:

$ docproc.proc -c examples/docproc-proc-natsio.conf

	Copy the the test records CSV file into the data directory to start content
processing:

$ cp examples/data/testrecords.csv data/testrecords.csv

	To verify that everything worked as expected, check the data directory
for the now processed testrecords.csv.DONE file and the output
directory for a set of new HTML files.

For a more sophisticated setup, take a look at the Docker Setup section.

Installing

This section provides an overview and guidance for installing docproc.

Binary Releases

You can download pre-built binary releases of docproc for different platforms
from https://github.com/marcusva/docproc/releases. If your platform is not
listed, you can also build docproc from source.

Building From Source

You can download source snapshots of docproc from
https://github.com/marcusva/docproc/tags. Besides the source distribution, you
also will need the following tools:

	Golang 1.8 or newer (https://golang.org/)

	dep (https://golang.github.io/dep/)

docproc relies on a message queue implementation. It currently supports the
following message queues:

	beanstalk - http://kr.github.io/beanstalkd/

	NSQ - http://nsq.io/

	NATS - https://nats.io/

Unpack the source snapshot into your GOPATH, run the dep command and
build docproc.

On Unix and Linux run

$ tar xzvf docproc-.tar.gz $GOPATH
$ cd $GOPATH/github.com/marcusva/docproc
$ dep ensure
$ build-release.sh

On Windows run

> unzip docproc-.zip %GOPATH%
> cd %GOPATH%/github.com/marcusva/docproc
> dep ensure
> build-release.bat

Those commands will build a set o docproc release distributions in the dist
folder.

Installation

Unpack the matching distribution package for your operating system and copy the
required binaries into the desired target location.

Example for Windows:

> unzip docproc-0.0.1-windows-amd64.zip
> cd docproc-0.0.1-windows-amd64
> copy docproc*.exe C:\docproc\bin

Example for Linux:

$ unzip docproc-0.0.1-linux-amd64.zip
$ cd docproc-0.0.1-linux-amd64
$ cp docproc*. /usr/local/bin

Set up the configuration files as appropriate and you are good to go.

Applications

docproc consists of multiple tools, which cover different aspects and steps of
the content processing chain. The very first step, consuming input data from
other applications, is covered by docproc.fileinput.
Subsequent steps, such as transforming the input into the desired target format,
are all handled by docproc.proc.

	docproc.fileinput

	docproc.proc

docproc.fileinput

docproc supports processing content from files, such as CSV or SAP RDI, via
the docproc.fileinput application.

When invoking docproc.fileinput, you may specify any of the following options:

docproc.fileinput [-hv] [-c file] [-l file]

	
-c <file>

	Load the configuration from the passed file. If not provided,
docproc.fileinput will try to read from the configuration file
docproc-fileinput.conf in the current working directory.

	
-h

	Print a short description of all command-line options and exit.

	
-l <file>

	Log information to the passed file.

	
-v

	Print version details and information about the build configuration and exit.

Configuration

The configuration file uses an INI-style layout and contains several sections,
some of them being optional and some of them being mandatory.

[log]
log to a specific file instead of stdout
file=<path/to/the/file>
level can be one of Emergency,Alert,Critical,Error,Warning,Notice,Info,Debug
level = Info

Queue to write the read messages to
[out-queue]
type = nsq
host = 127.0.0.1:4150
topic = input

Enabled file input handlers
[input]
handlers = rdi-in, csv-in

SAP RDI file handler
[rdi-in]
format = rdi
transformer = RDITransfomer
folder.in = data
pattern = *.gz
interval = 2

CSV file handler
[csv-in]
format = csv
transformer = CSVTransformer
delim = ;
folder.in = data
pattern = *.csv
interval = 2

Logging

Logging is configured via the [log] section. It can contain two entries.
The [log] section is optional and, if omitted, logging will happen on
STDERR with the log level Error.

	file

	The file to use for logging. This can be a file or writable socket.
If omitted, STDERR will be used.

	level

	The log level to use. The log level uses the severity values of RFC-5424 [http://www.rfc-base.org/txt/rfc-5424.txt]
in either numerical (0, 3, …) or textual form (Error,
Info, …). If omitted, Error will be used.

[log]
file = /var/log/docproc-fileinput.log
level = Info

Note

It is recommended to use the log level Error in a production environment
to spot message processing issues (e.g. a queue being not reachable
anymore). In rare situations, docproc.fileinput may use a more severe log
level to indicate critical internal application problems.

Output Queue

The output queue to write messages, generated from the input files, to, is
configured via the [out-queue] section. Configuration entries for the queue
may vary slightly, depending on the used message queue provider. The following
entries are required nevertheless.

[out-queue]
type = nsq
host = 127.0.0.1:4150
topic = input

	type

	The message queue type to use. This can be one of

	beanstalk

	nats

	nsq

	host

	The host or URI to use for connecting to the queue. The exact connection
string to use varies, depending on the queue type and your service layout.

	topic

	The message queue topic to write to. Consumers, such as docproc.proc can
use the same topic to receive and process the incoming messages from
docproc.fileinput.

File Input

File input handlers are activated in the [input] section and configured in
an own, user-defined section. The [input] section tells docproc.fileinput,
which other sections it shall read to configure the appropriate handlers.

The currently supported handlers are explained in File Input Handlers.

	handlers

	A comma-separated list of sections to use for configuring and activating
input handlers. The entries must match a section within the configuration
file.

[input]
Set up two handlers, which are configured in [rdi-in] and [csv-in]
handlers = rdi-in, csv-in

[rdi-in]
...

[csv-in]
...

docproc.proc

Processing content is mainly done by docproc.proc, with some minor exception
for docproc.fileinput, which feeds file-based data into the processing queues
being handled by docproc.proc.

When invoking docproc.proc, you may specify any of the following options:

docproc.proc [-hv] [-c file] [-l file]

	
-c <file>

	Load the configuration from the passed file. If not provided,
docproc.proc will try to read from the configuration file
docproc-proc.conf in the current working directory.

	
-h

	Print a short description of all command-line options and exit.

	
-l <file>

	Log information to the passed file.

	
-v

	Print version details and information about the build configuration and exit.

Configuration

The configuration file uses an INI-style layout.

Logging

Logging is configured via the [log] section. It can contain two entries.

	file

	The file to use for logging. This can be a file or writable socket.
If omitted, STDERR will be used.

	level

	The log level to use. The log level uses the severity values of RFC-5424 [http://www.rfc-base.org/txt/rfc-5424.txt]
in either numerical (0, 3, …) or textual form (Error,
Info, …). If omitted, Error will be used.

[log]
file = /var/log/docproc-fileinput.log
level = Info

The [log] section is optional and, if omitted, logging will happen on
STDERR with the log level Error.

Note

It is recommended to use the log level Error in a production environment
to spot message processing issues (e.g. a queue being not reachable
anymore). In rare situations, docproc.fileinput may use a more severe log
level to indicate critical internal application problems.

In-, Output and Error Queue

The input queue to read messages from is configured via the [in-queue]
section. The output queue to write processed messages for other consumers is
configured via the [out-queue] section. If you want to preserve messages,
that failed to process, you can also coonfigure an error queue via the
[error-queue] section.

Configuration entries for the queue(s) may vary slightly, depending on the used
message queue provider. The following entries are required nevertheless.

[in-queue]
type = nsq
host = 127.0.0.1:4161
topic = input

[out-queue]
type = nsq
host = 127.0.0.1:4150
topic = output

[error-queue]
type = nsq
host = 127.0.0.1:4150
topic = error

	type

	The message queue type to use. This can be one of

	beanstalk

	nats

	nsq

	host

	The host or URI to use for connecting to the queue. The exact connection
string to use varies, depending on the queue type and your service layout.

	topic

	[in-queue]: The message queue topic to read messages from for
processing.

[out-queue]: The message queue topic to write to. Consumers, such as
following docproc.proc instances can use the same topic to receive and
process the incoming messages.

[error-queue]: The message queue topic to write failed messages to.

Processors

Processors are activated in the [execute] section and configured in
an own, user-defined section. The [execute] section tells docproc.proc,
which other sections it shall read to configure the appropriate handlers.

	handlers

	A comma-separated list of sections to use for configuring and activating
processors. The entries must match a section within the configuration
file. The processors are executed in the order of appearance.

Processing the message stops immediately, if one of the configured processors
cannot sucessfully process the message. If an [error-queue] is configured,
docproc.proc will write the message in its current state to that queue.

Processors
[execute]
handlers = add-data, xml-transform

Processor of type "ValueEnricher"
[add-data]
type = ValueEnricher
rules = /app/rules/preproc/testrules.json

Processor of type TemplateTransformer"
[xml-transform]
type = TemplateTransformer
output = _xml_
templates = /app/templates/preproc/*.tpl
templateroot = main

The currently supported processors are explained in the chapter
Processors.

File Input Handlers

docproc.fileinput comes with support for converting different file formats and
file content into processable messages, which can be individually activated
and configured.

It currently supports the conversion of the following input formats:

	SAP RDI spool files via the RDITransformer

	CSV data via the CSVTransformer

Each individual file handler shares a common set of configuration entries:

[your-config]
format = <format-name>
folder.in = <directory to check>
pattern = <file pattern to check>
interval = <check interval>
transformer = <the relevant input transformer>
additional, transformer-specific configuration entries

	format

	The input file format. This is mainly used for informational purposes within
the message’s metadata and does not have any effect on the message
processing.

	folder.in

	The directory to watch for RDI files to be processed.

	pattern

	The file pattern to use for identifying RDI files. This can be a wildcard
pattern, strict file name matching or regular expression that identifies
those files, that shall be picked up by the RDITransformer.

	interval

	The time interval in seconds to use for checking for new files. This must
be a positive integer.

	transformer

	The input transformer to use. See below for a list of currently available
input transformers.

Input Transformers

	RDITransformer

	Processes SAP RDI spool files and transforms the contained documents into
messages.

	CSVTransformer

	Processes CSV files and transforms the contained rows into messages.

RDITransformer

SAP RDI files can be read using the RDITransformer within the input handler
configuration:

[your-config]
format = rdi
...
transformer = RDITransfomer

RDI files picked up by the RDITransfomer are assumed to be Gzip-compressed,
regardless of their suffix.

When processing an RDI file, the RDITransformer creates one or more messages.
A new message will be created, whenever a header (‘H’) window is found. All
data windows following the header will be put into the same message until the
next header window is found or if there are no more data windows to read.

+---+--------------+
| RDI contents | docproc |
| | Message |
+===+==============+
H0123456789789789789...	Message 1
S	
CCODEPAGE ...	
C...	
CCODEPAGE 1100	
DMAIN SECTION_A ABCD ...	Content
DMAIN SECTION_A FIELDX ...	of
DMAIN SECTION_A FIELDQ ...	Message 1
...	
+==============+	
H0123456789789789789 ...	Message 2
S	
CCODEPAGE ...	
C...	
CCODEPAGE 1100	
DMAIN SECTION_A ABCD ...	Content
DMAIN SECTION_A FIELDX ...	of
DMAIN SECTION_A FIELDQ ...	Message 2
C...	
DMAIN SECTION_B FIELD99 ...	
...	
+---+--------------+

Control (‘C’) and sort (‘S’) windows will be skipped and have no effect on the
message order or content layout.

Note

The RDITransformer follows an all-or-nothing approach when processing
an RDI file. The created messages are only placed on the queue, if the
whole RDI file can be read and transformed sucessfully.

The resulting message(s) consist of a content section, which contain one or more
sections entries named after the data window that contains the fields.

The above example would produce the following messages.

Message 1

{
 "metadata": {
 "format": "rdi",
 "batch": 1517607828,
 "created": "2018-02-02T22:43:48.0220047+01:00"
 },
 "content": {
 "sections": [
 {
 "name": "SECTION_A",
 "content": {
 "ABCD": "...",
 "FIELDX": "...",
 "FIELDQ": "...",
 }
 }
]
 }
}

Message 2

{
 "metadata": {
 "format": "rdi",
 "batch": 1517607828,
 "created": "2018-02-02T22:43:48.0220047+01:00"
 },
 "content": {
 "sections": [
 {
 "name": "SECTION_A",
 "content": {
 "ABCD": "...",
 "FIELDX": "...",
 "FIELDQ": "...",
 }
 },
 {
 "name": "SECTION_B",
 "content": {
 "FIELD_99": "...",
 }
 }
]
 }
}

CSVTransformer

CSV files can be read using the CSVTransformer within the input handler
configuration.

[your-config]
format = csv
...
transformer = CSVTransformer
delim = ;

	delim

	The column separator to use.

When processing a CSV file, the CSVTransformer creates one or more messages,
depending on the amount of rows within the CSV file.
The first row is considered the header row and its column values are used as
field names for the message content.

The CSV contents

CUSTNO;FIRSTNAME;LASTNAME
100112;John;Doe
194228;Manuela;Mustermann

would result in two messages to be created:

Message 1

{
 "metadata": {
 "format": "csv",
 "batch": 1517607828,
 "created": "2018-02-02T22:43:48.0220047+01:00"
 },
 "content": {
 "CUSTNO": "100112",
 "FIRSTNAME": "John",
 "LASTNAME": "Doe"
 }
}

Message 2

{
 "metadata": {
 "format": "csv",
 "batch": 1517607828,
 "created": "2018-02-02T22:43:48.0220047+01:00"
 },
 "content": {
 "CUSTNO": "194228",
 "FIRSTNAME": "Manuela",
 "LASTNAME": "Mustermann"
 }
}

Processors

docproc’s core command, docproc.proc offers a set of different, simple
processing tools, which can enhance, change, transform or send message contents.

The following pages provide in-depth information about the different processors
and their usage.

	ContentValidator

	Validates the message contents against a predefined set of rules.

	ValueEnricher

	Enables docproc to add new content to a message or to modify
existing content of the message.

	TemplateTransformer

	Provides templating support via Go’s text/template package.

	HTMLRenderer

	Provides templating support via Go’s html/template package. It is similar
to the TemplateTransformer, except that html/template contains
some builtin safety nets for HTML content.

	FileWriter

	Writes a specific entry of the message content to a file on disk.

	HTTPSender

	Sends a specific entry of the message content via HTTP POST to an HTTP host.

ContentValidator

The ContentValidator checks, if the contents of a message conform to a set
of predefined rules. This allows docproc to process only those messages, which
are considered functionally valid.

Configuration

The ContentValidator requires the following configuration entries:

[contentvalidator-config]
type = ContentValidator
rules = /path/to/a/rules/set

	type

	To configure a ContentValidator, use ContentValidator as type.

	rules

	rules refers to a file on disk containing the rules to be executed on
the message content. A rule consists of one or more conditions.

Defining Rules

The rules to be executed are kept in a simple JSON-based list.

[
 {
 "name": "First rule",
 "path": "NET",
 "op": "less than",
 "value": 0,
 },
 {
 "name": "Second rule",
 "path": "ZIP",
 "op": "exists",
 }
]

See Operating the Rules Engine for more details about how to configure rules.

ValueEnricher

The ValueEnricher enables docproc to add new content to a message or to modify
existing content of the message. It uses a simple rules engine to conditionally
modify or add content.

Configuration

The ValueEnricher requires the following configuration entries:

[valueenricher-config]
type = ValueEnricher
rules = /path/to/a/rules/set

	type

	To configure a ValueEnricher, use ValueEnricher as type.

	rules

	rules refers to a file on disk containing the rules to be executed on
the message content. A rule consists of one or more conditions and a target
value to set.

Defining Rules

The rules to be executed are kept in a simple JSON-based list.

[
 {
 "name": "First rule",
 "path": "NET",
 "op": "less than",
 "value": 0,
 "targetpath": "DOCTYPE",
 "targetvalue": "CREDIT_NOTE"
 },
 {
 "name": "Second rule",
 "path": "ZIP",
 "op": "exists",
 "targetpath": "HAS_ZIP",
 "targetvalue": true
 }
]

A rule to be used for the ValueEnricher consists of the following fields:

	name, path, op, value

	targetpath - specific to the ValueEnricher

	targetvalue - specific to the ValueEnricher

See Operating the Rules Engine for more details about how to configure rules.
Rules being used by the ValueEnricher contain two additional fields:

	targetpath

	Defines the path to use for writing the provided targetvalue. If the given
path does not exist, it will be created. Similarily to the path, the
targetpath can be nested using a dotted notation.

Accessing arrays is currently not possible.

	targetvalue

	The value to write into targetpath. The value can contain portions of the
existing message’s content using a ${<sourcepath>} notation.

Defining Target Paths

Target paths to write content to can be defined in the same way as the source
paths for comparision. A target path can refer to an existing path, causing it
to be overwritten with the new value on evaluating the rule successfully. The
target path can also be a completely new path, that will be created, if the
rule is successful.

Let’s add a city name based on the provided shortcut for the following message.

Message:

{
 "content": {
 "city_sc": "NY"
 }
}

Rule:

{
 "path": "city_sc",
 "op": "equals",
 "value": "NY",
 "targetpath": "city",
 "targetvalue": "New York"
}

Resulting Message:

{
 "content": {
 "city_sc": "NY",
 "city": "New York"
 }
}

Overwrite the city’s shortcut with the city name

Message:

{
 "content": {
 "city": "NY"
 }
}

Rule:

{
 "path": "city",
 "op": "equals",
 "value": "NY",
 "targetpath": "city",
 "targetvalue": "New York"
}

Resulting Message:

{
 "content": {
 "city": "New York"
 }
}

Add an address block containing the city name.

Message:

{
 "content": {
 "city_sc": "NY"
 }
}

Rule:

{
 "path": "city_sc",
 "op": "equals",
 "value": "NY",
 "targetpath": "address.city",
 "targetvalue": "New York"
}

Resulting Message:

{
 "content": {
 "city_sc": "NY",
 "address": {
 "city": "New York"
 }
 }
}

Defining Target Values

Target value can be any kind of atomic value types, such as integers, decimal
numbers, boolean values or strings. More complex values, such as JSON objects,
maps or arrays are not supported.

Message:

{
 "content": {
 "CITY": "New York",
 "ZIP": "10006",
 }
}

Rule:

{
 "path": "ZIP",
 "op": "exists",
 "targetpath": "HAS_ZIP",
 "targetvalue": true
}

{
 "content": {
 "CITY": "New York",
 "ZIP": "NY-10006",
 "HAS_ZIP": true
 }
}

Furthermore, target values can copy the values from existing paths, as long as
those contain atomic value types. To refer to an existing path, use ${}.

Prefix the ZIP code with state information for New York:

Message:

{
 "content": {
 "CITY": "New York",
 "ZIP": "10006",
 }
}

Rule:

{
 "path": "CITY",
 "op": "equals",
 "value": "New York",
 "targetpath": "ZIP",
 "targetvalue": "NY-${ZIP}"
}

Resulting Message:

{
 "content": {
 "CITY": "New York",
 "ZIP": "NY-10006"
 }
}

TemplateTransformer

The TemplateTransformer provides templating support via Go’s text/template [https://golang.org/pkg/text/template/]
package. This allows docproc to create complex, message-dependent content to be
stored in the message itself.

Configuration

The TemplateTransformer requires the following configuration entries:

[templatetransformer-config]
type = TemplateTransformer
identifier = path_to_store
templates = /path/to/all/templates/*.tpl
templateroot = main

	type

	To configure a TemplateTransformer, use TemplateTransformer as type.

	identifier

	The path to use on the message’s content to store the transformed result in.

	templates

	Location of the template files on disk. This should be a glob pattern match.

	templateroot

	The template entry point to use ({{define "your-templateroot" }}).

HTMLRenderer

The HTMLRenderer provides templating support via Go’s html/template [https://golang.org/pkg/html/template/]
package. This allows docproc to create complex, message-dependent content to be
stored in the message itself.
It is similar to the TemplateTransformer, except that html/template
contains some builtin safety nets for HTML content.

Configuration

The HTMLRenderer requires the following configuration entries:

[htmlrenderer-config]
type = HTMLRenderer
identifier = path_to_store
templates = /path/to/all/templates/*.tpl
templateroot = main

	type

	To configure a HTMLRenderer, use HTMLRenderer as type.

	identifier

	The path to use on the message’s content to store the transformed result in.

	templates

	Location of the template files on disk. This should be a glob pattern match.

	templateroot

	The template entry point to use ({{define "your-entrypoint" }}).

FileWriter

The FileWriter writes a specific entry of the message content to a file on disk.

Configuration

The FileWriter requires the following configuration entries:

[filewrite-config]
type = FileWriter
identifier = htmlresult
rules = /app/rules/output/file-html.json
filename = filename
path = /app/output

	type

	To configure a FileWriter, use FileWriter as type.

	identifier

	The path of the message’s content save to the file.

	filename

	The path of the message’s content containing the filename to use.

	path

	The directory to use for storing the file.

	rules

	The set of rules to use to decide, if the file shall be written or not.

HTTPSender

The HTTPSender sends a specific entry of the message content via HTTP POST to
an HTTP host.

Configuration

The HTTPSender requires the following configuration entries:

[httpsender-config]
type = HTTPSender
identifier = body
url = http://some.endpoint/receive_msg

	type

	To configure a HTTPSender, use HTTPSender as type.

	identifier

	The path of the message’s content to send to the host.

	url

	The URL to send the content to.

Operating the Rules Engine

docproc ships with a small, easy-to-use rules engine that allows many of its
builtin processors to behave in certain ways, according to your message
contents. The rules are, if not stated otherwise executed against the message’s
content section.

Since docproc uses JSON heavily, rules are also expressed in a JSON notation
and are organised as a simple JSON array:

[
 {
 ... # rule 1
 },
 {
 ... # rule 2
 },
 {
 ... # rule 3
 }
]

Rule Configuration

A rule typically consists of the following fields.

{
 "name": "<optional name of the rule>",
 "path": "<message content path to use for comparing or checking>",
 "op": "<operator to use>",
 "value": "<value to use for comparision>",
 "subrules": ["<more nested rules>"]
}

	name

	An optional name describing the rule. This is for maintenance purposes and
does not have any effect on the rule, if provided or absent.

	path

	The message’s content element to check. Paths can be nested using a dotted
notation.

	op

	The comparision operator to use. If not stated otherwise, the comparision
will consider path being the left-hand and value the right-hand argument:

value-of-path <op> rule-value

	value

	The value to compare the path’s value against. value can be omitted, if
the comparision operator is exists or not exists. If it is provided
for those operators, it will be ignored.

	subrules

	A list of additional rules that have have to be tested. The rule as well
as all its sub-rules have to match successfully to consider the rule as a
whole as successful.

Please note that all subrules are evaluated before the rule itself is
evaluated. Thus, the most inner subrule is the first being tested.

Setting Paths

Paths are always relative to the message’s content element and can use a
dotted notation to access nested elements of a message. It is also possible
to access array values using brackets and the required index number.

Let’s have a look at a few examples of configuring proper paths for rules.
Given the following message

{
 "content": {
 "name": "John Doe",
 "age": 30,
 "address": {
 "street": "Example Lane 123",
 "zip": "10026",
 "city": "New York"
 },
 "netValues": [
 1000.00,
 453.00,
 -102.00,
 2
]
 }
}

you can access and check the age of John Doe being greater than 20 via

{
 "path": "age",
 "op": ">",
 "value": 20
}

Accessing nested elements is done by connecting the element and its sub-element
with a dot. To check, if an address exists and if its city is New York, you can
use address.city.

{
 "path": "address.city",
 "op": "eq",
 "value": "New York",
 "subrules": [
 {
 "path": "address",
 "op": "exists"
 }
]

}

Note

Subrules are evaluated before the rule itself is evaluated. Thus, if you
think of multiple conditions that have to apply, you have to build them
in a reverse order:

1st condition: if an address exists
2nd condition: and if its city name is "New York"

thus becomes:

2nd (outer) rule: and if its city name is "New York"
1st (inner) rule: if an address exists

Make use of name to explain more complex rules to keep your maintenance
efforts at a minimum.

You can access array values using brackets [] and the value’s index.
Indexing starts at zero, so that the first element can be accessed by [0],
the second by [1] and so on.

{
 "path": "netValues[2]",
 "op": ">=",
 "value": 500,
}

Operators

	Existence

	To check, if a given path of a message exists (it may contain nil values
or empty strings) or not, use the exists and not exists operators:

{
 "path": "address",
 "op": "exists"
}

{
 "path": "alternativeName",
 "op": "not exists"
}

Any value provided on the rule, will be ignored.

	Equality

	The following operators check, if the provided values are equal:

=, ==, eq, equals

{
 "path": "name",
 "op": "=",
 "value": "John Doe",
}

Their counterparts, to check for inequality, are:

<>, !=, neq, not equals

{
 "path": "name",
 "op": "neq",
 "value": "Jane Janeson",
}

	Size Comparators

	Values can also be compared by size. This is straightforward for numeric
values. If you use size comparators on strings, please note that the strings
are compared lexicographically.

To check, if the left-hand value is greater than the right-hand value:

>, gt, greater than

{
 "path": "age",
 "op": ">",
 "value": 21,
}

To check, if the left-hand value is greater than or equal to the
right-hand value:

>=, gte, greater than or equals

{
 "path": "netValues[0]",
 "op": "gte",
 "value": 500,
}

Their counterparts for checking the other way around:

<, lt, less than

{
 "path": "age",
 "op": "<",
 "value": 50,
}

and

<=, lte, less than or equals

{
 "path": "netValues[3]",
 "op": "less than or equals",
 "value": -1.0,
}

	String Matching

	To check, if a string contains another string or not, use the following
operators:

contains, not contains

{
 "path": "name",
 "op": "contains",
 "value": "Doe",
}
{
 "path": "name",
 "op": "not contains",
 "value": "Jane",
}

As for the size comparators, this checks, if the left-hand value contains
the right-hand value. To check the other way around, use

in, not in

instead.

{
 "path": "name",
 "op": "in",
 "value": "John Doe, Jane Doe, or their kids",
}

{
 "path": "address.city",
 "op": "not in",
 "value": "London, Vancouver, Washington, Halifax",
}

Docker Setup

The following information will guide you through a simple configuration
scenario for creating your own docker [https://docker.com] setup. They can be summed up as

	create the base image via docker

	build the docproc images via docker-compose

	run everything via docker-compose

Note

You will need the source distribution of docproc, which you can find at
https://github.com/marcusva/docproc/tags for stable snapshots.

Base Image

The docproc base image contains all docproc applications as well as a
nsqd binary to get docproc up and running for testing with the NSQ [https://nsq.io]
message queue system.

Create the base image with the following instructions:

$ docker build -t docproc/base .

The base image is now registered in your local docker registry as
docproc/base.

Note

The docproc applications of the base image will be built with nsq
support only. To change this behaviour, you can tweak the BUILD_FLAGS
within Dockerfile as necessary or override the BUILD_FLAGS at the
command line:

$ docker build --build-arg BUILD_FLAGS="-tags beanstalk" -t docproc/base .

The nsqd binary will be built and installed nevertheless, if Dockerfile
is not edited, though.

Build docproc Images

Create all docproc images with the following instruction:

$ docker-compose build

This creates the following set of docproc images:

	docproc/fileinput

	docproc/preproc

	docproc/renderer

	docproc/postproc

	docproc/output

Each image can be run individually. Each image runs a local nsqd server to
be used by the individual docproc executable.

Run Everything

All services, including an nsqd, nsqlookupd and nsqadmin instance can be run via:

$ docker-compose up

Todo

document ports and directories properly.

Index

 Symbols
 | C

Symbols

 	
 	
 -c <file>

 	command line option, [1]

 	
 -h

 	command line option, [1]

 	
 	
 -l <file>

 	command line option, [1]

 	
 -v

 	command line option, [1]

C

 	
 	
 command line option

 	-c <file>, [1]

 	-h, [1]

 	-l <file>, [1]

 	-v, [1]

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to docproc’s documentation!

 		
 Quick Start

 		
 Installing

 		
 Binary Releases

 		
 Building From Source

 		
 Installation

 		
 Applications

 		
 docproc.fileinput

 		
 Configuration

 		
 docproc.proc

 		
 Configuration

 		
 File Input Handlers

 		
 Input Transformers

 		
 Processors

 		
 Operating the Rules Engine

 		
 Rule Configuration

 		
 Setting Paths

 		
 Operators

 		
 Docker Setup

 		
 Base Image

 		
 Build docproc Images

 		
 Run Everything

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

